The Problem Flesh Bones

Representations of $SL_2(\mathbb{K})$ as $SL_2(\mathbb{K})$ -modules

Adrien Deloro

Université Paris 6

October 9^{th} , 2015

Definition

 $SL_2(\mathbb{K})$

For ${\mathbb K}$ a field, we let:

$$\mathsf{SL}_2(\mathbb{K}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix} : (\mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d}) \in \mathbb{K}^4 : \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

be the group of 2×2 matrices with determinant 1.

We are interested in some representations of this group.

What is a group?

Be careful that $SL_2(\mathbb{K})$ can be considered:

- as a Lie group if $\mathbb{K} = \mathbb{R}$ or \mathbb{C} ;
- as an algebraic group (the group of \mathbb{K} -points of an alg. group);
- as a finite group (if K is finite);
- as an abstract group (= a group, and nothing more).

Accordingly, there can be more than the sole group structure. In particular, the notion of a representation depends on how we consider $SL_2(\mathbb{K})$ ("in which category?"). In this talk we go for less: $SL_2(\mathbb{K})$ will be an abstract group.

Homogeneous polynomial representations

Let (X, Y) be indeterminates. SL₂(\mathbb{K}) acts from the right by:

Flesh Bones

$$(X, Y) \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (aX + cY, bX + dY)$$

Now let $SL_2(\mathbb{K})$ act on polynomials P(X, Y) from the left by:

$$\underbrace{\begin{pmatrix}a & b\\c & d\end{pmatrix}}_{g} \cdot P(X, Y) = P((X, Y) \cdot g) = P(aX + cY, bX + dY)$$

This does define an action. Degree is preserved, so we restrict:

Fact

For each $d \ge 1$, $SL_2(\mathbb{K})$ acts on the \mathbb{K} -vector space of homogeneous polynomials of degree d in (X, Y).

4 / 33

Homogeneous polynomial representations, cont'd

Notation

Let $S_d(\mathbb{K})$ be the space of homogeneous polynomials of degree d in (X, Y), equipped with the action of $SL_2(\mathbb{K})$.

So
$$S_d(\mathbb{K}) = \mathbb{K}[X^d, X^{d-1}Y, \dots, XY^{d-1}, Y^d]$$
 with $: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot P(X, Y) = P(aX + cY, bX + dY)$

Fact

 $S_d(\mathbb{K})$ has dimension d + 1 and is irreducible, i.e. there are no $SL_2(\mathbb{K})$ -invariant vector subspaces (other than 0 and $S_d(\mathbb{K})$).

Example

- The natural representation on \mathbb{K}^2 can be viewed as S_1 .
- The adjoint representation can be viewed as S₂.
 Adjoint rep.: action by conjugacy on 2 × 2 matrices with trace 0.

Flesh Bones

Representations of $SL_2(\mathbb{K})$ as an algebraic group

Fact

 $S_d(\mathbb{K}) = \mathbb{K}[X^d, X^{d-1}Y, \dots, XY^{d-1}, Y^d]$ is an irreducible rep. of $SL_2(\mathbb{K})$.

 $(S_d \simeq \text{Sym}^d \text{Nat} SL_2$, but we won't use that.)

Fact (algebraic representation theory)

The irreducible representations of the alg. group SL_2 are exactly the spaces S_d , for $d \ge 1$.

In the algebraic category, this is the end of the story.

Question

But as an *abstract* group?

The talk aims at addressing this question.

The question

Question

Can one try to understand abstract $SL_2(\mathbb{K})$ -modules? Can one identify $S_d(\mathbb{K})$ among $SL_2(\mathbb{K})$ -modules?

Definition

A G-module is an abelian group V acted on by G. We do not assume that V is a vector space.

No extra structure on V nor G... So let's do brute-force group theory.

Known cases

"Can one identify $S_d(\mathbb{K})$ among $SL_2(\mathbb{K})$ -modules?"

Theorem (Smith, Timmesfeld "Quadratic" Theorem) Let V be an irreducible $SL_2(\mathbb{K})$ -module. Suppose $(u-1)^2 = 0$ in End(V), where $u = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then $V \simeq S_1(\mathbb{K}) = \mathbb{K}[X, Y]$ (natural rep.).

Flesh Bones

The proof gives a way to explicitly *define* a \mathbb{K} -linear structure on V.

Theorem (Cherlin-D.)

Let V be an irreducible $SL_2(\mathbb{K})$ -module with Morley rank $2 \operatorname{rk} \mathbb{K} < \operatorname{rk} V \leq 3 \operatorname{rk} \mathbb{K}$. Then $V \simeq S_2(\mathbb{K}) = \mathbb{K}[X^2, XY, Y^2]$ (adjoint rep.).

The latter served as the starting point of the talk.

Strategy

Goal: identify $S_d(\mathbb{K})$ among abstract $SL_2(\mathbb{K})$ -modules.

Notation

```
Let \mathbb{K} be a field and \mathbb{K}_1 \subseteq \mathbb{K} be the prime subfield (\mathbb{F}_{\rho} \text{ or } \mathbb{Q}).
Let G = SL_2(\mathbb{K}) and G_1 = SL_2(\mathbb{K}_1) \leq SL_2(\mathbb{K}) = G.
```

Flesh Bones

Ideology

 $G = SL_2(\mathbb{K})$ is flesh and bones: it has

- a skeleton, visible in $G_1 = SL_2(\mathbb{K}_1)$;
- flesh on it, extending $SL_2(\mathbb{K}_1)$ into $SL_2(\mathbb{K})$.

Strategy (two-fold strategy)

- Understand $SL_2(\mathbb{K}_1)$ -modules.
- See if SL₂(K₁)-structure of module determines SL₂(K)-structure.

he Problem

Bones

Scalar extension

We begin with Task 2:

See if SL₂(K₁)-structure of module determines SL₂(K)-structure.

We need to understand how $G = SL_2(\mathbb{K})$ extends $G_1 = SL_2(\mathbb{K}_1)$, and how the G_1 -structure constraints the *G*-structure. This is *not* "Clifford theory" since G_1 is highly non-normal in *G*!

Bones

A result

 $V \simeq_H W$ means: V and W are isomorphic as H-modules.

Theorem (The Flesh Theorem)

Let V be a $G = SL_2(\mathbb{C})$ -module and $d \ge 1$ be fixed. Suppose that over $G_1 = SL_2(\mathbb{Q})$, $V \simeq_{G_1}$ a sum of copies of $S_d(\mathbb{Q})$. Then $V \simeq_G$ a sum of copies of $S_d(\mathbb{C})$.

Remark

The theorem holds for arbitrary \mathbb{K} provided the characteristic is large enough $(\sim 2n)$ and \mathbb{K} has enough roots $(\sim n!$ -rad. closed).

Remark

Same theorem for $\mathfrak{sl}_2(\mathbb{K})$ (no assumptions on \mathbb{K} being rad. closed).

The Problem

Bones

Two words on the proof

Theorem

Suppose $V \simeq_{G_1}$ a sum of copies of $S_d(\mathbb{Q})$ (fixed d). Then $V \simeq_G$ a sum of copies of $S_d(\mathbb{C})$.

- One must *construct* a \mathbb{C} -vector space structure on V.
- Idea: use unipotent group to capture weight spaces, then use torus to define scalar action.
- Problem: torus $T \simeq \mathbb{K}^{\times}$ gives multiplication but no addition! $(\lambda \mu) \cdot \mathbf{v} = t_{\lambda \mu} \mathbf{v} = t_{\lambda} t_{\mu} \mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$, but $(\lambda + \mu) \cdot \mathbf{v} = t_{\lambda + \mu} \cdot \mathbf{v} =$?

he Problem

Bones

Proof sketch (for experts)

Let
$$u_{\lambda} = \begin{pmatrix} 1 & \lambda \\ & 1 \end{pmatrix}$$
 and $t_{\lambda} = \begin{pmatrix} \lambda & \\ & \lambda^{-1} \end{pmatrix}$. Also let $w = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
In End(V), let $x_{\lambda} = \log(u_{\lambda})$.

- Prove that x_{λ} makes sense.
- Capture weight spaces in terms of x_1 (visible over G_1 !)

• For
$$a \in C_V(u_1) = \ker x_1 = \ker x_\lambda = C_V(u_\lambda)$$
, see that:

$$x_1^{d-1}x_{\lambda^d}w\cdot a = t_\lambda\cdot a$$

(Use "Steinberg relations".)

- This proves that letting $\lambda^d \cdot a := t_{\lambda} \cdot a$ is well-defined and additive in λ !
- Push linear structure around with w and x_1 ; get linearity.

The Problem

Bones

A question

Theorem

Suppose $V \simeq_{G_1}$ a sum of copies of $S_d(\mathbb{Q})$ (fixed d). Then $V \simeq_G$ a sum of copies of $S_d(\mathbb{C})$.

More generally:

Question

Let \mathbb{G} be an algebraic group and $\mathbb{K} \subseteq \mathbb{L}$ be two fields. Let V be a $\mathbb{G}_{\mathbb{L}}$ -module. Suppose V is isotypical as a $\mathbb{G}_{\mathbb{K}}$ -module. Can one describe the $\mathbb{G}_{\mathbb{L}}$ -structure?

Non-experts, please wake up! Now for some colourful geometry.

he Problem A result Flesh Limits A geometric explanation

The goal

We return to Task 1:

• Understand $SL_2(\mathbb{K}_1)$ -modules.

Here we are too ambitious: we shall even work with $G_0 = SL_2(\mathbb{Z})$. G_0 has no torus, and no Bruhat decomposition \rightarrow much trickier.

Remark

In
$$S_d$$
, element $u = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ acts with $(u-1)^{d+1} = 0$.

This suggests to focus on modules with $(u-1)^k = 0$.

e Problem A result Flesh Limits

A result Limits A geometric explanation

A result

Theorem (The Bones Theorem)

Let V be a $\mathbb{Q}[SL_2(\mathbb{Z})]$ -module. Suppose $(u-1)^5 = 0$ in End(V). Then V has a composition series $0 = V_0 \leq \cdots \leq V_i \leq \cdots \leq V_n$ s.t. every factor is a sum of $S_{d_i}(\mathbb{Q})$ (d_i depends only on i).

Proof.

Ugly computation involving $tanh(\frac{1}{2} \log u) \leftarrow (hyperbolic stuff!).$

Corollary (combine with "Flesh" Theorem)

• Smith-Timmesfeld: if $(u-1)^2 = 0$ then V is a sum of $S_1(\mathbb{K})$.

2 *V* irreducible with $2 \operatorname{rk} \mathbb{K} < \operatorname{rk} V \leq 3 \operatorname{rk} \mathbb{K} \Rightarrow V \simeq S_2(\mathbb{K})$.

he Problem Flesh A result _imits A geometric explanation

Questions

Theorem (The Bones Theorem)

Let V be a $\mathbb{Q}[SL_2(\mathbb{Z})]$ -module. Suppose $(u-1)^5 = 0$ in End(V). Then V has a composition series $0 = V_0 \leq \cdots \leq V_i \leq \cdots \leq V_n$ s.t. every factor is a sum of $S_{d_i}(\mathbb{Q})$ (d_i depends only on i).

But Step 1 of strategy was for $SL_2(\mathbb{K}_1)$, \mathbb{K}_1 the *prime field*!

Questions

- What happens with \mathbb{Q} instead of \mathbb{Z} ?
- What happens with \mathbb{F}_p instead of \mathbb{Z} and \mathbb{Q} ?

I do not know.

e Problem A resul Flesh Limits

A result Limits A geometric explanation

A digression: the Lie ring

Theorem (The Bones Theorem)

Let V be a $\mathbb{Q}[SL_2(\mathbb{Z})]$ -module. Suppose $(u-1)^5 = 0$ in End(V). Then V has a composition series $0 = V_0 \leq \cdots \leq V_i \leq \cdots \leq V_n$ s.t. every factor is a sum of $S_{d_i}(\mathbb{Q})$ (d_i depends only on i).

Let
$$\mathfrak{sl}_2(\mathbb{K}) = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : (a, b, c) \in \mathbb{K}^3 \right\}$$
 seen as *Lie ring*, i.e. with $+$ and $[\cdot, \cdot]$ (forget vector space structure).

Theorem

Let V be a
$$\mathbb{K}_1[\mathfrak{sl}_2(\mathbb{K}_1)]$$
-module, $\mathbb{K}_1 = \mathbb{Q}$ or \mathbb{F}_p with $p > 2n$.
Suppose $x^n = 0$ in $\operatorname{End}(V)$, where $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
Then V splits into a direct sum of $S_d(\mathbb{K}_1)$ (various d's).

The Problem Flesh A result Limits A geometric explanation

A corollary

Theorem (The Bones Theorem)

Let V be a $\mathbb{Q}[SL_2(\mathbb{Z})]$ -module. Suppose $(u-1)^5 = 0$ in End(V). Then V has a composition series $0 = V_0 \leq \cdots \leq V_i \leq \cdots \leq V_n$ s.t. every factor is a sum of $S_{d_i}(\mathbb{Q})$ (d_i depends only on i).

Corollary

The \mathbb{Q} -algebra $\mathbb{Q}[SL_2(\mathbb{Z})]/((u-1)^5)$ (quotient by an ideal) is finite-dimensional.

he Problem A result Flesh Limits A geometric explanatio

Limits

Corollary

 $\mathbb{Q}[SL_2(\mathbb{Z})]/((u-1)^5)$ is finite-dimensional.

Proposition (Wolff)

 $\mathbb{Q}[SL_2(\mathbb{Z})]/((u-1)^7)$ is not finite-dimensional.

Proof.

Retrieve triangular group D(2,3,7). \leftarrow hyperb

 $\leftarrow \text{ hyperbolic stuff again}!!$

Question

What about n = 6?

he Problem A Flesh Lir

A result Limits A geometric explanation

Geometry

Corollary

 $\mathbb{Q}[SL_2(\mathbb{Z})]/((u-1)^5)$ is finite-dimensional.

I wish to give an alternate, geometric proof of the Corollary. The argument was entirely found by Maxime Wolff. It is highly visual and involves Bass-Serre theory. Even if you don't get all details, it will be fun. (And if you're not a geometer, you might learn something.) The Problem A result Flesh Limits A geometric explanation

The Tree

Bass-Serre tree of $PSL_2(\mathbb{Z}) \simeq \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$ (combinatorial object):

Arity 2 nodes bear no information: forget them.

ne Problem An Flesh Lin

A result Limits A geometric explanation

The Action

 $G_0 = \mathsf{SL}_2(\mathbb{Z})$ acts on \mathcal{T} (set of vertices).

- A special geodesic is a line that always turns in the same direction.
- Translation along Γ makes sense.
- Fact: each conjugate of $u^{\pm 1} = \begin{pmatrix} 1 & \pm 1 \\ & 1 \end{pmatrix}$ acts as a 1-step translation along some special geodesic.

The Problem Flesh A result Limits A geometric explanation

An Example

Suppose we want the iterates $u^k \cdot t$ of given $t \ (k \ge 0)$.

- Link t to the axis of u

 call t' the projection.
- Compute $u \cdot t'$ (easy).
- Then copy-paste the red segment, moving it along the axis.
- And so on.

e Problem Flesh A result Limits A geometric explanation

Another Example: find $u^2 \cdot t$

Problem A result Flesh Limits A geometric ei

The Proof – Changing model

Goal (the corollary)

 $\mathbb{Q}[\mathsf{SL}_2(\mathbb{Z})]/((u-1)^n)$ is finite-dimensional for $n\leq 5$. We'll do it for n=4.

- Let $Y = \{gu^{\pm 1}g^{-1} : g \in \mathsf{SL}_2(\mathbb{Z})\} \leftrightarrow \{1\text{-step spec. geod. transl.}\}.$
- Let T be the set of vertices and $M = \mathbb{Q}[T]$ (v.s. with basis T).

Action of $SL_2(\mathbb{Z})$ on T extends linearly to an action on M.

- Let $N = \langle \{(u_1 1)^n \cdot t : (u_1, t) \in Y \times T \} \rangle$, subspace of M.
- Now let Q = M/N.

Fact (mostly changing language)

 $\mathbb{Q}[\mathsf{SL}_2(\mathbb{Z})]/((u-1)^n)$ is finite-dimensional iff Q is.

Goal (redefined)

Q = M/N is finite-dimensional for $n \leq 5$.

he Problem A result Flesh Limits A geometric explanatio

The Proof – Changing point of view

Notation

Υ	=	$\{gu^{\pm}$	1g	-1	g	\in	SL ₂	$(\mathbb{Z}$)}				
Ν	=	$\langle \{(u_1$	-	$1)^{n}$	· t	:	$(u_1,$	t)	\in	Υ	\times	T	>

$$M = \mathbb{Q}[T]$$
$$Q = M/N$$

Goal (redefined)

- Q = M/N is finite-dimensional for $n \leq 5$ (we'll do it for n = 4).
- M/N has a basis in a finite set around some fixed $t_0 \in T$.
- Any $t \in T$ far from t_0 is lin. comb. of elmnts *closer to* t_0 .

Now observe that for arbitrary $(t, u_1) \in T \times Y$,

$$(u_1-1)^n \cdot t = u_1^n \cdot -nu_1^{n-1} \cdot t + \dots + (-1)^{n-1}nu_1 \cdot t + (-1)^n t$$

so (in Q), t = a linear combination of $u_1 \cdot t$, ..., $u_1^n \cdot t$.

Goal (redefined)

Push far away t closer to fixed t_0 using spec. geodesic translations.

Problem A result Flesh Limits A geometric explan

The Proof – Three Cases

Goal (redefined)

Push far away t closer to fixed t_0 using spec. geodesic translations.

(It's OK if you missed the point: one may start from here.) There are three cases, depending on where the origin t_0 is.

We are trying to push t closer to t_0 but:

- point marked is t,
- case div. is on t₀.

ne Problem Flesh

A result Limits A geometric explanation

The Proof – Case 1

Suppose t_0 lies in the blue zone. Let us push t and iterates closer. $u_1 \cdot t$, $u_1^2 \cdot t$, $u_1^3 \cdot t$ and $u_1^4 \cdot t$ are closer to t_0 than t was: done! he Problem Flesh A result Limits A geometric explanation

The Proof – Case 2

If t_0 lies in red zone, u_2 takes $u_2 \cdot t, \ldots, u_2^4 \cdot t$ closer: done!

Problem A result Flesh Limits

The Proof – Case 3

Suppose t_0 lies in the green zone.

- Start like in Case 2.
- $u_2 \cdot t, u_2^2 \cdot t, u_2^3 \cdot t$ are closer to $t_0 \dots$

but $u_2^4 \cdot t$ is equally far as t (4 steps from green zone)!

- So it suffices to push
 t' := u₂⁴ · t closer to
 t₀, with another
 unipotent.
- Pick u_3 and check.
- Done!

The Problem Flesh A result Limits A geometric explanation

For Students

Exercises

- Carry a proof with n = 5.
- [not too hard] Translate your geometric proof into a formal argument.
- [much harder] Translate your geometric proof into a beamer/tikz show-and-tell.
- [open] What happens with n = 6?

Problem A result Flesh Limits A geometric exp

Flesh and bones: Sum-up

Theorem (The Flesh Theorem)

Let V be a $G = SL_2(\mathbb{C})$ -module and $d \ge 1$ be fixed. Suppose that over $G_1 = SL_2(\mathbb{Q})$, $V \simeq_{G_1}$ a sum of copies of $S_d(\mathbb{Q})$. Then $V \simeq_G$ a sum of copies of $S_d(\mathbb{C})$.

Theorem (The Bones Theorem)

Let V be a $\mathbb{Q}[SL_2(\mathbb{Z})]$ -module. Suppose $(u-1)^5 = 0$ in End(V). Then V has a composition series $0 = V_0 \leq \cdots \leq V_i \leq \cdots \leq V_n$ s.t. every factor is a sum of $S_{d_i}(\mathbb{Q})$ (d_i depends only on i).

Proposition (Wolff)

 $\mathbb{Q}[SL_2(\mathbb{Z})]/((u-1)^7)$ is not finite-dimensional.

Thanks!